Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[(E)-4,4'-(ethene-1,2-diyl)dipyridinium [[bis(thiocyanato-kN)-ferrate(II)]-di- μ-thiocyanato$\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

Susanne Wöhlert,* Mario Wriedt, Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24098 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 3 September 2010; accepted 9 September 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.068$; data-to-parameter ratio $=19.2$.

In the title compound, $\left\{\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]\right\}_{n}$, each $\mathrm{Fe}^{\mathrm{II}}$ cation is coordinated by four N -bonded and two S-bonded thiocyanate anions in an octahedral coordination mode. The asymmetric unit consists of one $\mathrm{Fe}^{\mathrm{II}}$ cation, located on a center of inversion, as well as one protonated $(E)-4,4^{\prime}$-(ethene-1,2diyl)dipyridinium dication and two thiocyanate anions in general positions. The crystal structure consists of $\mathrm{Fe}-$ $(\mathrm{NCS})_{2}-\mathrm{Fe}$ chains extending along the a axis, in which two further thiocyanate anions are only terminally bonded via nitrogen. Non-coordinating (E)-4,4'-(ethene-1,2-diyl)dipyridinium cations are found between the chains.

Related literature

For general background, see: Wriedt \& Näther (2009a,b); Wriedt et al. (2009a,b). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]$
$V=990.14(6) \AA^{3}$
$M_{r}=472.41$
$Z=$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
$a=5.7360$ (2) A
$\mu=1.20 \mathrm{~mm}^{-1}$
$b=11.5093$ (4) A
$T=293 \mathrm{~K}$
$c=15.0971$ (6) \AA
$0.16 \times 0.13 \times 0.09 \mathrm{~mm}$
$\beta=96.562$ (3)
Data collection
Stoe IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32
Stoe \& Cie, 2008)
$T_{\text {min }}=0.826, T_{\text {max }}=0.895$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$
$S=1.09$
2379 reflections

16607 measured reflections 2379 independent reflections 2173 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{N} 11$	$2.1090(16)$	$\mathrm{Fe} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.6375(5)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.1165(15)$		
$\mathrm{N} 11^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{N} 1$	$89.61(7)$	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{S} 1^{\mathrm{i}}$	$87.23(4)$
$\mathrm{N} 11^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{N} 1^{\mathrm{ii}}$	$90.39(7)$	$\mathrm{N} 11^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{S} 1^{\mathrm{iii}}$	$89.26(5)$
$\mathrm{N} 11^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{S} 1^{\mathrm{i}}$	$90.74(5)$	$\mathrm{N} 1^{1 i}-\mathrm{Fe} 1-\mathrm{S} 1^{\mathrm{iii}}$	$92.77(4)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+2,-y,-z+1$; (iii) $x+1, y, z$.

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X AREA; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL.

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr. Wolfgang Bensch for the opportunity to use his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2228).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany
Wriedt, M. \& Näther, C. (2009a). Dalton Trans. pp. 10192-10198.
Wriedt, M. \& Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.
Wriedt, M., Sellmer, S. \& Näther, C. (2009a). Dalton Trans. pp. 7975-7984.
Wriedt, M., Sellmer, S. \& Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.

supplementary materials

catena-Poly $[(E)-4,4$ '-(ethene-1,2-diyl)dipyridinium $\quad[[b i s(t h i o c y a n a t o-\kappa N)$ ferrate(II)]-di- μ-thiocy-anato- $\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

S. Wöhlert, M. Wriedt, I. Jess and C. Näther

Comment

Recently, we have shown that thermal decomposition reactions are an elegant route for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt \& Näther, 2009a, 2009b; Wriedt et al., 2009a, 2009b). In our ongoing investigation on the synthesis, structures and properties of such compounds based on paramagnetic transition metal pseudo-halides and N-donor ligands, we have reacted iron(II) sulfate heptahydrate, potassium thiocyanate and $E-1,2-\mathrm{di}(4$ '-pyridyl)-ethene in water. In this reaction single crystals of the title compound were obtained, which were characterized by single crystal X-ray diffraction.

The title compound of composition $\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]_{\mathrm{n}}-\left[E-1,2-\mathrm{di}\left(4^{\prime} \text {-pyridinium)-ethene }\right]_{\mathrm{n}}\right.$ (Fig. 1) represents an 1-D coordination polymer, in which each iron(II) cation is connected by four $\mu-1,3$ bridging thiocyanato anions into chains that elongate in the direction of the crystallographic a-axis (Fig. 3). The octahedral coordination of each Fe cation is completed by two N-bonded thiocyanato anions. It must be noted that according to a search in the CCDC database (ConQuest Ver. 1.12 2010) such chains with transition metals are unknown (Allen, 2002).

Between the chains noncoordinating protonated $(E)-4,4$-(ethene-1,2-diyl)dipyridinium cations are found, which are stacked in the direction of the crystallographic a-axis involving weak π - π-stacking interactions (Fig. 2). The $\mathrm{FeN}_{4} \mathrm{~S}_{2}$ octahedron is slightly distorted with two long Fe—SCN distances of 2.6375 (5) \AA and short $\mathrm{Fe}-\mathrm{NCS}$ distances of 2.109 (2) and 2.116 (2) \AA. The angles arround the metal atoms range between 87.23 (5) to 92.77 (5) and 180° (Tab. 1). The shortest intramolecular $\mathrm{Fe} \cdots \mathrm{Fe}$ distance amounts to 5.7360 (2) \AA and the shortest intermolecular $\mathrm{Fe} \cdots \mathrm{Fe}$ distance amounts to 9.4919 (3) Å.

Experimental

$\mathrm{FeSO}_{4} \times 7 \mathrm{H}_{2} \mathrm{O}$ and 1,2-di(4'-pyridyl)-ethene were obtained from Sigma Aldrich. KNCS was obtained from Alfa Aesar. 0.6 $\mathrm{mmol}(168.8 \mathrm{mg}) \mathrm{FeSO}_{4} \times 7 \mathrm{H}_{2} \mathrm{O}, 1.2 \mathrm{mmol}(118.5 \mathrm{mg}) \mathrm{KNCS}$ and $0.15 \mathrm{mmol}(28.2 \mathrm{mg})$ 1,2-di(4'-pyridyl)-ethene were reacted with $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ in a closed test-tube at $120^{\circ} \mathrm{C}$ for three days. On cooling green block-shaped single crystals of the title compound were obtained in a mixture with unknown phases.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ of the parent atom using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

supplementary materials

Figures

Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: $i=-x+1,-y+1,-z+1 ; i i=-x+1,-y$, $z+1 ;$ iii $=+x+1,+y,+z ; i v=-x+2,-y+1,-z+1$.

Fig. 2. : Packing arrangement of the title compound with view approximately along the crystallographic a-axis.

Fig. 3. : Packing arrangement of the title compound with view on the inorganic part $\mathrm{Fe}(\mathrm{NCS})_{2}-(\mathrm{NCS})_{2}-\mathrm{Fe}(\mathrm{NCS})_{2}$ approximately along the crystallographic b-axis. The non-coordinated organic cations were omitted for clearity.
catena-Poly[(E)-4,4'-(ethene-1,2-diyl)dipyridinium [[bis(thiocyanato-к N)ferrate(II)]-di- μ-thiocyanato$\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right] \\
& M_{r}=472.41 \\
& \text { Monoclinic, } P 2_{1} / c \\
& \text { Hall symbol: }-\mathrm{P} 2 \mathrm{ybc} \\
& a=5.7360(2) \AA \\
& b=11.5093(4) \AA \\
& c=15.0971(6) \AA \\
& \beta=96.562(3)^{\circ} \\
& V=990.14(6) \AA^{3} \\
& Z=2
\end{aligned}
$$

$F(000)=480$
$D_{\mathrm{x}}=1.585 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 16607 reflections
$\theta=2-28^{\circ}$
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.16 \times 0.13 \times 0.09 \mathrm{~mm}$

Data collection

[^0]2379 independent reflections
2173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$

ω scans

Absorption correction: numerical
(X-SHAPE and $X-R E D 32$; Stoe \& Cie, 2008)
$T_{\text {min }}=0.826, T_{\max }=0.895$
16607 measured reflections
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-7 \rightarrow 7$
$k=-15 \rightarrow 15$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$
$S=1.09$
2379 reflections
124 parameters
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fe1	1.0000	0.0000	0.5000	$0.03128(10)$
N2	$0.3720(3)$	$0.38242(17)$	$0.30355(13)$	$0.0541(4)$
H2	0.2544	0.3548	0.2697	0.065^{*}
S1	$0.26743(7)$	$0.16763(4)$	$0.57486(3)$	$0.03779(11)$
C1	$0.5284(3)$	$0.12116(14)$	$0.55629(11)$	$0.0334(3)$
N1	$0.7106(3)$	$0.08926(14)$	$0.54301(11)$	$0.0430(4)$
S11	$1.12064(9)$	$-0.23939(5)$	$0.76873(3)$	$0.04587(13)$
C11	$1.0730(3)$	$-0.15568(16)$	$0.68107(12)$	$0.0371(4)$
N11	$1.0414(3)$	$-0.09600(16)$	$0.61976(11)$	$0.0490(4)$
C21	$0.6655(4)$	$0.52070(17)$	$0.32949(15)$	$0.0522(5)$
H21	0.7402	0.5868	0.3113	$0.063 *$
C22	$0.7421(3)$	$0.46922(17)$	$0.41067(13)$	$0.0425(4)$
C23	$0.6230(4)$	$0.3727(2)$	$0.43548(15)$	$0.0571(6)$

H 23	0.6699	0.3361	0.4895	0.069^{*}
C24	$0.4368(4)$	$0.3310(2)$	$0.38090(17)$	$0.0620(6)$
H24	0.3550	0.2664	0.3979	0.074^{*}
C25	$0.4812(4)$	$0.47453(19)$	$0.27648(15)$	$0.0555(6)$
H25	0.4323	0.5077	0.2213	0.067^{*}
C26	$0.9479(4)$	$0.52118(18)$	$0.46271(14)$	$0.0494(5)$
H26	1.0085	0.5891	0.4410	0.059^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe 1	$0.02351(16)$	$0.04009(18)$	$0.03042(17)$	$0.00428(13)$	$0.00389(12)$	$0.00449(13)$
N 2	$0.0395(9)$	$0.0612(11)$	$0.0580(11)$	$-0.0001(8)$	$-0.0097(8)$	$-0.0187(9)$
S 1	$0.0277(2)$	$0.0431(2)$	$0.0430(2)$	$0.00552(16)$	$0.00590(16)$	$-0.00552(18)$
C 1	$0.0305(8)$	$0.0355(8)$	$0.0338(8)$	$-0.0023(6)$	$0.0025(6)$	$-0.0036(6)$
N 1	$0.0276(7)$	$0.0470(8)$	$0.0549(9)$	$0.0011(6)$	$0.0061(6)$	$-0.0103(7)$
S 11	$0.0449(3)$	$0.0521(3)$	$0.0399(2)$	$0.0004(2)$	$0.00183(19)$	$0.0133(2)$
C 11	$0.0297(8)$	$0.0441(9)$	$0.0372(9)$	$-0.0029(7)$	$0.0025(6)$	$0.0003(7)$
N 11	$0.0494(9)$	$0.0565(10)$	$0.0395(8)$	$-0.0047(8)$	$-0.0020(7)$	$0.0121(7)$
C 21	$0.0602(13)$	$0.0386(10)$	$0.0549(12)$	$-0.0038(9)$	$-0.0060(10)$	$0.0019(8)$
C 22	$0.0389(9)$	$0.0434(10)$	$0.0435(10)$	$-0.0004(7)$	$-0.0029(8)$	$-0.0071(8)$
C 23	$0.0644(14)$	$0.0628(13)$	$0.0417(10)$	$-0.0140(11)$	$-0.0043(10)$	$0.0063(9)$
C 24	$0.0612(14)$	$0.0671(14)$	$0.0573(13)$	$-0.0247(12)$	$0.0048(11)$	$-0.0017(11)$
C25	$0.0639(14)$	$0.0466(11)$	$0.0510(12)$	$0.0118(10)$	$-0.0146(10)$	$-0.0034(9)$
C26	$0.0510(11)$	$0.0445(10)$	$0.0504(11)$	$-0.0050(8)$	$-0.0048(9)$	$0.0022(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

Fe1-N11	2.1090 (16)
Fel-N11 ${ }^{\text {i }}$	2.1090 (16)
Fel-N1	2.1165 (15)
Fel-N1 ${ }^{\text {i }}$	2.1165 (15)
Fel-S $1^{\text {ii }}$	2.6375 (5)
Fe1-S1 ${ }^{\text {iii }}$	2.6375 (5)
N2-C25	1.320 (3)
N2-C24	1.324 (3)
N2-H2	0.8600
S1-C1	1.6437 (17)
$\mathrm{S} 1-\mathrm{Fe} 1^{\text {iv }}$	2.6375 (5)
C1-N1	1.147 (2)
S11-C11	1.6345 (19)
$\mathrm{N} 11-\mathrm{Fe} 1-\mathrm{N} 11^{\text {i }}$	180.0
N11-Fe1-N1	90.39 (7)
N11 ${ }^{\text {i }}$-Fe1-N1	89.61 (7)
N11-Fe1-N1 ${ }^{\text {i }}$	89.61 (7)
$\mathrm{N} 11^{\mathrm{i}}$ - $\mathrm{Fe} 1-\mathrm{N} 1^{\text {i }}$	90.39 (7)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 1^{\text {i }}$	180.0 (9)

$\mathrm{C} 11-\mathrm{N} 11$	$1.150(2)$
$\mathrm{C} 21-\mathrm{C} 25$	$1.359(3)$
$\mathrm{C} 21-\mathrm{C} 22$	$1.387(3)$
$\mathrm{C} 21-\mathrm{H} 21$	0.9300
$\mathrm{C} 22-\mathrm{C} 23$	$1.378(3)$
$\mathrm{C} 22-\mathrm{C} 26$	$1.469(3)$
$\mathrm{C} 23-\mathrm{C} 24$	$1.360(3)$
$\mathrm{C} 23-\mathrm{H} 23$	0.9300
$\mathrm{C} 24-\mathrm{H} 24$	0.9300
$\mathrm{C} 25-\mathrm{H} 25$	0.9300
$\mathrm{C} 26-\mathrm{C} 26^{\mathrm{V}}$	$1.307(4)$
$\mathrm{C} 26-\mathrm{H} 26$	0.9300
$\mathrm{~N} 11-\mathrm{C} 11-\mathrm{S} 11$	$179.25(19)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{Fe} 1$	$174.08(17)$
$\mathrm{C} 25-\mathrm{C} 21-\mathrm{C} 22$	$120.0(2)$
$\mathrm{C} 25-\mathrm{C} 21-\mathrm{H} 21$	120.0
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$	120.0
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$117.88(18)$

sup-4

supplementary materials

N11-Fel-S1i ${ }^{\text {ii }}$	89.26 (5)	C23-C22-C26	125.17 (19)
N11 ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{S} 1^{\text {ii }}$	90.74 (5)	C21-C22-C26	116.93 (19)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{S} 1^{\text {ii }}$	92.77 (4)	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	120.0 (2)
N1 ${ }^{\text {i }}$-Fe1-S $1^{\text {ii }}$	87.23 (4)	C24-C23-H23	120.0
N11-Fe1-S1 ${ }^{\text {iii }}$	90.74 (5)	C22-C23-H23	120.0
N11 ${ }^{\text {i }}$-Fe1-S1 ${ }^{\text {iii }}$	89.26 (5)	N2-C24-C23	119.9 (2)
N1-Fe1-S1 ${ }^{\text {iii }}$	87.23 (4)	N2-C24-H24	120.1
$\mathrm{N} 1{ }^{\text {i }}$-Fe1-S $1^{\text {iii }}$	92.77 (4)	C23-C24-H24	120.1
$\mathrm{S} 1{ }^{\text {ii }}$-Fe1-S1 ${ }^{\text {iii }}$	180.0	N2-C25-C21	119.8 (2)
C25-N2-C24	122.48 (18)	N2-C25-H25	120.1
C25-N2-H2	118.8	C21-C25-H25	120.1
C24-N2-H2	118.8	C26- ${ }^{\text {V }} 26$ - 222	124.7 (3)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Fe} 1^{\text {iv }}$	100.68 (6)	C26- ${ }^{\text {V }} 26$ - H 26	117.6
N1-C1-S1	179.60 (19)	C22-C26-H26	117.6
C1—N1—Fe1	166.29 (15)		

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x+1, y, z$; (iv) $x-1, y, z$; (v) $-x+2,-y+1,-z+1$.

Fig. 1

Fig. 2

Fig. 3

[^0]: Stoe IPDS-2
 diffractometer
 Radiation source: fine-focus sealed tube graphite

